

CCU development opportunities in Rijnmond

Start meeting January 25th 2017

CE Delft

- Independent research and consultancy since 1978
- Transport, energy and resources
- Know-how on economics, technology and policy issues
- 50 Employees, based in Delft, the Netherlands
- Not-for-profit

Clients: industries, mainly Rijnmond, European Commission and Parliament, national and regional governments, Dutch provinces, PBL and NGO's

Deltalinqs

All our publications <a>www.cedelft.eu or <a>@CEDelft

2

1. Introduction

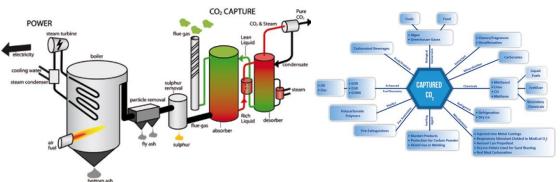
Recent developments are very much in favour of CCU, Carbon Capture and Utilisation:

- Carbon emission reduction, Paris Agreement at 90⁺ % emission reduction Requires disruptive technologies, so less 'Lock-in effects'
- 2. Rapid price decrease of current renewable energy (wind and solar) Grid parity is near, periods of zero price, more inexpensive RE to come..!?
- RE will deliver inexpensive renewable building blocks (H₂ and e), solves dependability on fossil fuels and enables Deep Decarbonisation

eltalings

Future grid unbalance requires storage options
 → carbon recycling with CCU in Power-to-Products (P2P) seems very attractive

3


1. Introduction

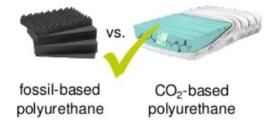
CCU is a 3-step process:

- 1. CO₂ capture from flue gas
 - concentrations ranging from high (petrochemical industry, ethanol), to intermediate (steel, CFPP), to low (GFPP) to air
- 2. Purification and compression
 - intensity depending on process (not always required as in CCS application)
- 3. CO₂ conversion into material or product i.e.:
 - Mineralisation
 - Methanol, intermediate (MDE, MTO, MTG), or as solvent or fuel
 - Formic acid, as product or energy (H_2) carrier i.e. for FCEV
 - Carboxylate/carbonates
 - Carbamate(esters) for isocyanates and polyol intermediates for 'CO2 neutral PU'

Deltalings

- Urea, carbon monoxide, carbon fibres etc. etc.

2. Technology


- Step 1, capture process is now well-developed and proven, including for flue gas
- Still being optimised to cut energy consumption with state-of-the-art solvents
- Decreasing required temperatures of the heat input, nearing waste heat levels
- Plant integration is logical for the required heat source
- Positive by-effects of capture using flue gas i.e. PM removal
- Experienced CATO pilot plant will come to Plant One Rotterdam as CO₂ source

Deltalings

2. Technology

- Step 2, purification and compression is well developed i.e. for OCAP
- Step 3, the utilisation processes are quite diverse
- Synthesis of chemicals, materials and fuels
- Three product classes are identified in EC-SETIS communication¹:

- 1- Renewable feedstock for chemicals, polymers and inorganic materials
- 2- Energy storage and fuels
- 3- Direct photo-conversion of CO₂ (i.e. algae, greenhouse)

¹ https://setis.ec.europa.eu/setis-reports/setis-magazine/carbon-capture-utilisation-and-storage/commission-activities-enable-co2

2. CCU Technology options - where to start?

Two criteria for selection of CCU process routes:

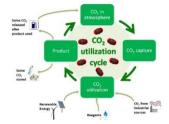
Name	Туре	Energy	Potential ¹ In EU, 2030 In kT/yr	Business case
Methanol	Organic	Hydrogen (electrolysis)	40,000	Profitable at low e-prices / as biofuel
Formic acid	Organic /storage	Hydrogen (electrolysis)	7,000	Profitable at low e-prices
Urea	Inorganic	Hydrogen (electrolysis)	7,000	Not yet profitable
Carbonates	Mineral	-	300	Profitable
Polyols	Organic	-	120	Profitable
Polymers- resins	Organic	Hydrogen (electrolysis)	p.m.	p.m.

¹ https://setis.ec.europa.eu/setis-reports/setis-magazine/carbon-capture-utilisation-and-storage/carbon-capture-and-utilisation-%E2%80%93

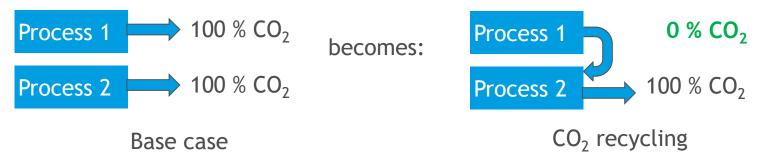
2. Does CCU really impact emission reduction?

'Kunnen we CO₂ ook recycleren?' (ethanolproductie uit afgassen van de staalindustrie bij ArcelorMittal)

of


'Spookrijden op de weg naar nul-emissie van CO₂'?

8

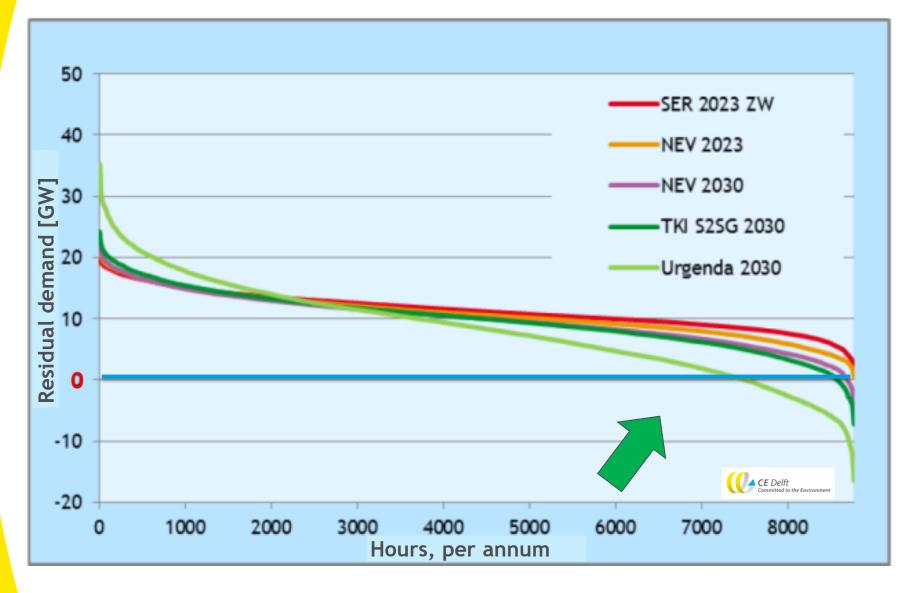

2. Real impact of CCU technology options

Source: How Can CCU Provide a Net Benefit? - presentation by Peter Styring at the UKCCSRC Cardiff Biannual Meeting, 10-11 September 2014

LCA as objective criterion for selection of different CCU process routes:

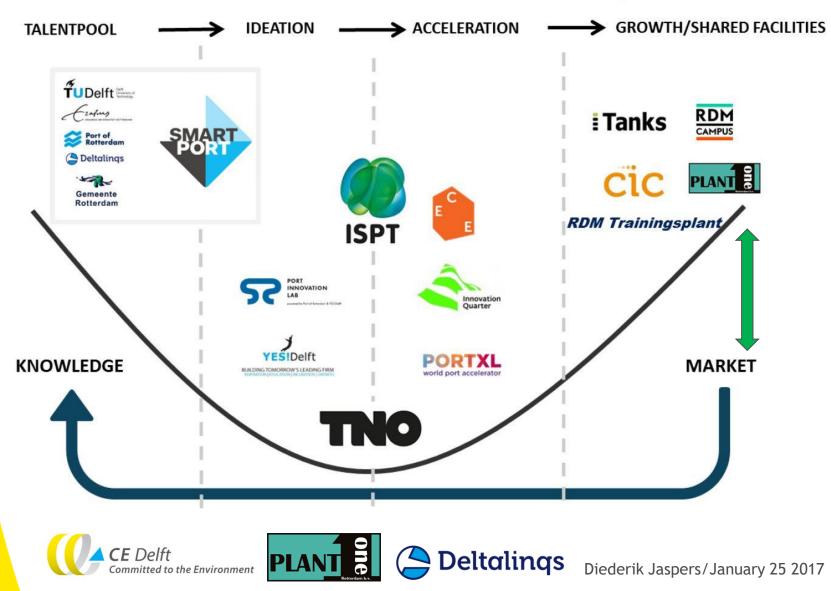
1- Short cyclic (CO_2 is reused but finally emitted in a next product or process) Either fossil or biogenic feeds and CO_2

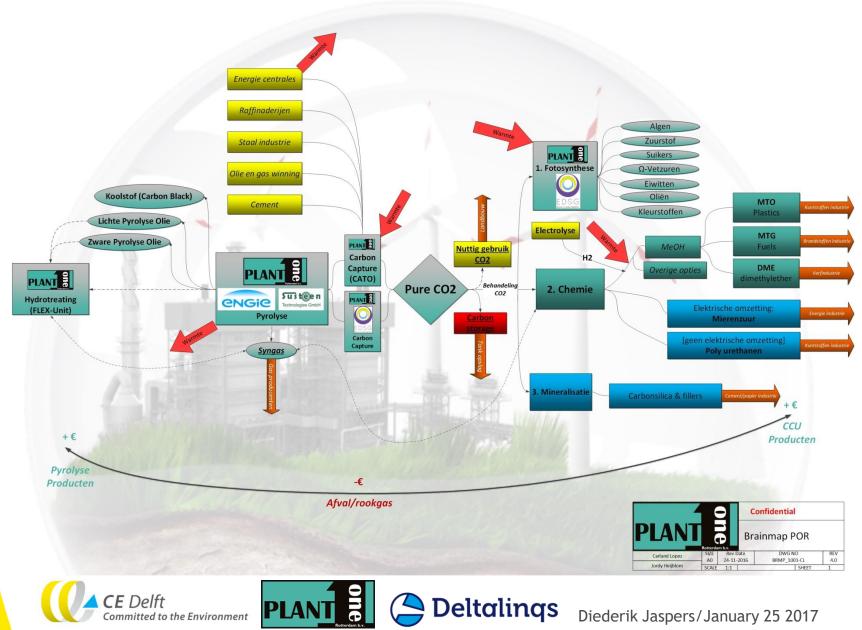
2- Long cyclic (CO₂ is stored in a stable material i.e. in mineral/concrete)


3. Business case outlook

- Boundary condition: use of hydrogen from renewable source (electrolysis)
- Electricity price is main cost component \rightarrow but current trend to low prices
- Catalysts exist, but new catalyst development will lower OPEX and CAPEX cost
- Common reactors, no requirements for high-tech expensive CAPEX developments
- ETS CO₂ price is less strong driver, no need for waiting for policy changes
- Already close or at same order of magnitude
- Element of competition: offering carbon neutral feedstocks will incur a premium driven by the LCA effect in the supply chain required by the clients

3. CE Delft study - future E-demand in The Netherlands




3. Plant One - study Rein Willems

Business Innovation Eco System

3. Plant One - CCU mini-grid

Committed to the Environment

4. Project development at Plant One Rotterdam <refer to POR cluster scheme>

- 1. POR is 'one-stop-shopping' for CCU pilot plants
- 2. Commission crude CO₂ sources (pyrolysis pilot plants, other..)
- 3. Commission CATO pilot plant for CO₂ capture
- 4. CO₂ drying and compression
- 5. CCU reactor options for various processes, i.e.:
 - Algae
 - Polyuretanes Carboxylation / carbonation (ROCOP, i.e. Novomer catalysts)

Deltalinqs

- Methanol (various catalysts)
- Formic acid
- Mineralisation (Solidia/Carbstone)
- 6. Heat integration between pyrolisis, capture and reaction compartments
- 7. Use of residual hydrogen from pyrolysis syngas and local source make-up and reuse it in CCU processes

CHEMISTRY NORLD

Carbon dioxide-to-methanol catalyst ignites 'fuel from air' debate

BY ANDY EXTANCE | 14 JANUARY 2016

Nobel winner's team hopes 'air capture' of greenhouse gas can store renewable energy - but others see problems

- Maximum attention Key Enabling Technologies (KET) at EU DG RTD
 Ford announces use of 'carbon emission free' polyurethane
- DREAM CCU program in Germany resulted in fast decision for larger scale carbon neutral polyurethane plant by Covestro (former Bayer)
- Profitability seems close, helped by very low renewable E-price trend
- CCU reactions will benefit of better catalysts, but reactions are known
- Recently discovered: reactive capture from air into methanol at only 150 °C ...

5. Near and future outlook

6. Goals of CCU development projects at the Plant One Rotterdam CCU facility?

• GOAL 1: develop relevant CCU process to enable near full scale realisation and offer clients carbon emission free products at lowest cost

• GOAL 2: increase competitiveness of Rijnmond area by attracting CCU operations with key facilities and simultaneously decrease local CO₂ emissions

Deltalings

7. Group sessions today

pixtastock.com - 17577990

- Group selection, i.e.:
 - 1- Mineralisation
 - 2- Polyurethane and polymers/resins
 - 3- Solvents and fuels (MeOH, FA)
 - 4- Photosynthetic (algae)
- Desk study on detailed CCU options for specific products
- Product requirements / LCA long vs short cyclic CCU / CO₂ specs
- Pilot project requirements

eltalings

8. Next steps

pixtastock.com - 17577990

- Separate CCU project definitions
- Desk study on detailed CCU options for specific products (Deltalings-Uniper study, ready March 2017)
- Product requirements, LCA of process routes- long vs short cyclic CCU, CO₂ specs
- Pilot project requirements / funding
- Route to full scale CCU applications

8. Next steps - full scale outlook

- Full scale locating options:
 - a- All at source

pixtastock.com – 17577990

- b- Capture at source, transport via OCAP, CCU at central location
- c- Capture at source, transport via OCAP, CCU at various locations
- Capture preferably at waste heat source
- CCU preferably at (waste) hydrogen and/or wind electrical source and/or waste heat source
- Multiple opportunities for plant integration and industrial symbiosis
- Full scale business models CCU outsourcing options
- The Rijnmond area has the best starting point to attract commercial CCU activities

eltalings

pixtastock.com - 17577990

- Next meeting CCU Platform: March 30th, 14.00 16.30
- Location: Plant One Rotterdam
- Agenda: Desk study on detailed CCU options for specific products (Deltalings-Uniper study)

